7 research outputs found

    Quantum computing with a single molecular ensemble and a Cooper pair box

    Full text link
    We propose to encode quantum information in rotational excitations in a molecular ensemble. Using a stripline cavity field for quantum state transfer between the molecular ensemble and a Cooper pair box two-level system, our proposal offers a linear scaling of the number of qubits in our register with the number of rotationally excited states available in the molecules.Comment: 4 pages, 3 figures Minor corrections from reviewing proces

    Quantum state reconstruction with imperfect rotations on an inhomogeneously broadened ensemble of qubits

    Get PDF
    We present a method for performing quantum state reconstruction on qubits and qubit registers in the presence of decoherence and inhomogeneous broadening. The method assumes only rudimentary single qubit rotations as well as knowledge of decoherence and loss mechanisms. We show that full state reconstruction is possible even in the case where single qubit rotations may only be performed imperfectly. Furthermore we show that for ensemble quantum computing proposals, quantum state reconstruction is possible even if the ensemble experiences inhomogeneous broadening and if only imperfect qubit manipulations are available during state preparation and reconstruction.Comment: 6 pages, 5 figure

    Holographic quantum computing

    Full text link
    We propose that a single mesoscopic ensemble of trapped polar molecules can support a "holographic quantum computer" with hundreds of qubits encoded in collective excitations with definite spatial phase variations. Each phase pattern is uniquely addressed by optical Raman processes with classical optical fields, while one- and two-qubit gates are accomplished by selectively transferring the individual qubit states to a stripline microwave cavity field and a Cooper pair box where controllable two-level unitary dynamics is governed by classical microwave fields.Comment: 4 pages, 3 figure

    Full-Scale Demonstration of Combined Ground Source Heating and Sustainable Urban Drainage in Roadbeds

    No full text
    This paper proposes and demonstrates, in full scale, a novel type of energy geostructure (“the Climate Road”) that combines a ground-source heat pump (GSHP) with a sustainable urban drainage system (SUDS) by utilizing the gravel roadbed simultaneously as an energy source and a rainwater retarding basin. The Climate Road measures 50 m × 8 m × 1 m (length, width, depth, respectively) and has 800 m of geothermal piping embedded in the roadbed, serving as the heat collector for a GSHP that supplies a nearby kindergarten with domestic hot water and space heating. Model analysis of operational data from 2018–2021 indicates sustainable annual heat production levels of around 0.6 MWh per meter road, with a COP of 2.9–3.1. The continued infiltration of rainwater into the roadbed increases the amount of extractable heat by an estimated 17% compared to the case of zero infiltration. Using the developed model for scenario analysis, we find that draining rainwater from three single-family houses and storing 30% of the annual heating consumption in the roadbed increases the predicted extractable energy by 56% compared to zero infiltration with no seasonal energy storage. The Climate Road is capable of supplying three new single-family houses with heating, cooling, and rainwater management year-round

    The Climate Road—A Multifunctional Full-Scale Demonstration Road That Prevents Flooding and Produces Green Energy

    No full text
    This paper presents a multifunctional full-scale demonstration road, the Climate Road, which combines climate adaptation and mitigation in a single system. The Climate Road is located at Hedensted, Denmark and is 50 m long and 8 m wide, and the depth of the roadbed is 1 m. Half of the Climate Road, i.e., 25 m, is paved with permeable asphalt and the remaining 25 m with traditional asphalt. All surface water drains into the roadbed, which stores up to 120 m3 of water, either directly through the permeable asphalt or by drain grates. In addition, 800 m of geothermal pipes are embedded in the roadbed, distributed over four 200 m w-loops, two buried 1 m below the asphalt and two similar loops at 0.5 m depth. The Climate Road was tested from May 2019 to May 2021. In the project period, a total precipitation value of 1654 mm was recorded, the mean temperature was 9.3 °C and the most intense rainfall was 40.3 mm/30 min. The long-term infiltration performance of the permeable asphalt shows that the overall infiltration capacity slowly reduces. The reduction can be hindered, but not completely prevented, with annual restorative cleaning. After two years of operation, the Climate Road still, by a large margin, fulfils the recommendations of the infiltration capacity of 97.2 mm/h for the vast majority of the road section. The total volume reduction capacity is estimated to be between 15 and 30%. Based on an analysis of 61 single rain events, the event detention time is found to range between 10 and 130 min, with an average of 35 min. During the project period, the Climate Road produced a total of 98 MWh for a nearby kindergarten, with an average coefficient of performance (COP) of 3.1

    The Climate Road—A Multifunctional Full-Scale Demonstration Road That Prevents Flooding and Produces Green Energy

    No full text
    This paper presents a multifunctional full-scale demonstration road, the Climate Road, which combines climate adaptation and mitigation in a single system. The Climate Road is located at Hedensted, Denmark and is 50 m long and 8 m wide, and the depth of the roadbed is 1 m. Half of the Climate Road, i.e., 25 m, is paved with permeable asphalt and the remaining 25 m with traditional asphalt. All surface water drains into the roadbed, which stores up to 120 m3 of water, either directly through the permeable asphalt or by drain grates. In addition, 800 m of geothermal pipes are embedded in the roadbed, distributed over four 200 m w-loops, two buried 1 m below the asphalt and two similar loops at 0.5 m depth. The Climate Road was tested from May 2019 to May 2021. In the project period, a total precipitation value of 1654 mm was recorded, the mean temperature was 9.3 °C and the most intense rainfall was 40.3 mm/30 min. The long-term infiltration performance of the permeable asphalt shows that the overall infiltration capacity slowly reduces. The reduction can be hindered, but not completely prevented, with annual restorative cleaning. After two years of operation, the Climate Road still, by a large margin, fulfils the recommendations of the infiltration capacity of 97.2 mm/h for the vast majority of the road section. The total volume reduction capacity is estimated to be between 15 and 30%. Based on an analysis of 61 single rain events, the event detention time is found to range between 10 and 130 min, with an average of 35 min. During the project period, the Climate Road produced a total of 98 MWh for a nearby kindergarten, with an average coefficient of performance (COP) of 3.1
    corecore